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Summary

1. (Vertex) Routing Problems: A brief history and overview;

2. Packing (and Loading) problems:

One-, Two-, and Three-dimensional packing;

3. A combination: Routing problems with loading constraints.
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1. Routing problems
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The origins: circuits on graphs
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• Leonard Euler (1759): Solution d’une question curieuse qui ne paroit soumise à aucune

analyse. Knights tour problem:

– a knight is placed on an empty n× n
chessboard and must visit each square exactly once by only using valid chess moves of a knight:

– by defining a graph in which the vertices correspond to the chessboard squares and the

edges to the legal knight moves, a knight’s tour corresponds to a path (or a cycle) that

visits every vertex of the graph exactly once:
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• Sir William Rowan Hamilton, Irish mathematician (1859): Icosian Game

– played on a wooden planar representation of the edges of a dodecahedron (a graph),

with holes at each of the twenty vertices:

– The first player stuck five pegs in any consecutive vertices, and the second player was

requested to stick the remaining fifteen pegs so as to complete the resulting path to a cycle

visiting each vertex exactly once;

– a circuit that passes through each vertex exactly once is called a Hamiltonian circuit;

– sold for £25 to a Dublin toy manufacturer. (It seems that the sales were not satisfactory

though.)
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Hamiltonian circuits and the Traveling Salesman Problem

Given a directed graph G = (V,A), V = {v1, . . . , vn}, A = {(vi, vj) : vi, vj ∈ V }
or an undirected graph G = (V,E), E = {(vi, vj) ≡ (vj, vi) : vi, vj ∈ V }
decide if the graph possesses a Hamiltonian circuit:
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The problem can be solved by enumerating all permutations of the vertices and checking each of

the for feasibility: This will take a time proportional to (n− 1)! (exponential, impractical) but

the problem is NP-complete in the strong sense: most likely it will never be possible to solve it

in a time that grows polynomially with n.
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If the graph has weights (costs, lengths, times, ...) associated with the arcs/edges, the Traveling
Salesman Problem (TSP) is to find the Hamiltonian circuit of minimum total weight:
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Book published in 1931 in German: The Traveling Salesman Problem, how he should be and what

he should do to be successful in his business. By a veteran traveling salesman.

Generalization of the Hamiltonian circuit problem =⇒ NP-hard in the strong sense.

Applications in freight transportation using a single vehicle. BUT

Real world applications use a fleet of vehicles based at one or more depots,

and have specific constraints.
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Vehicle Routing Problems

• Optimal delivering of goods, using a set of vehicles, based at one or more depots, through a

road network.

• Freight transportation

– takes 10% - 25% of the final cost for consumer goods;

– use of optimization techniques =⇒ savings of 5% - 20% of the total transportation costs.

• General Vehicle Routing Problem (VRP): Find a set of routes, each assigned to a

vehicle that starts and ends at its depot, so that a set of specific operational

constraints is satisfied and the total transportation cost is minimized.

• Generalization of the Traveling salesman problem =⇒ NP-hard in the strong sense.

• Different models according to the considered constraints. Most models: undirected graphs

Basic (simplest) VRP: Capacitated Vehicle Routing Problem (CVRP):

– vertex 0=depot; vertices i (i = 1, . . . , n)=customers; edge costs cij(i, j = 0, 1, . . . , n);

– customer i requests goods of total weight di (i = 1, . . . , n);

– each customer must be visited by a single vehicle;

– K vehicles having capacity D (or having capacities Dk (k = 1, . . . , K));

– the total weight on each vehicle must be ≤ D (or on vehicle k must be ≤ Dk ∀ k).

– minimize the total cost of the routes.
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Vehicle Routing Problems (cont’d)

• Distance-Constrained CVRP: like CVRP, with an additional constraint:

– tij = traveling time of edge (i, j) (either coinciding with cij, or not);

– Tk = maximum total traveling time for vehicle k (k = 1, . . . , K).

• VRP with Time Windows: like CVRP, with an additional constraint:

– tij = traveling time of edge (i, j);

– for each customer i,

∗ si = time needed to download goods;

∗ [ai, bi] = time window within which the delivery must start.

• VRP with Backhauls: like CVRP, with an additional constraint:

– the customers are partitioned into two sets:

∗ linehaul customers to whom goods are to be delivered;

∗ backhaul customers whose goods need to be transported back to the depot;

– each vehicle must visit all its linehaul customers before all its backhaul customers;

– for each vehicle k,

max{(total linehaul weight),(total backhaul weight)} ≤ D (or ≤ Dk ∀ k).
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Vehicle Routing Problems (cont’d)
• VRP with Pickup and Delivery: like CVRP, with an additional constraint:

– for each customer i:

∗ di = quantity of goods to be delivered to the customer;

∗ pi = quantity of goods to be picked up at the customer;

– when the vehicle arrives, it first downloads then uploads;

– for each vehicle k the total carried weight at any time must be ≤ D (or ≤ Dk ∀ k).

• VRP with Loading Constraints: like CVRP, with an additional constraint:

– for each customer i:

∗ list of the packages to be delivered, with their dimensions (height, width, length);

– for each vehicle k: dimensions of the loading area (height, width, length);

– the solution must provide, for each vehicle, the packing in the loading area.

• Same constraints and variants studied for the TSP

• Combinations of the various constraints (e.g., backhauls + time windows + ...)

• Variants (multiple depots, customers served by more vehicles, special compartments, ...)

• All strongly NP-hard.
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2. Packing problems
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One-dimensional bin packing problem

A geometrical description:

• given n segments (items) having width wj (j = 1, . . . , n), and an unlimited number of

identical large segments (bins) having width W ,

w1 W
. . .

pack all the segments, without overlapping, into the minimum number of bins:

• The problem is NP-hard in the strong sense.

• huge literature
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Two-dimensional bin packing problem (2BP)

• given n rectangles (items), having width wj and height hj (j = 1, . . . , n),

w1

h1

W

H
. . .

• and an unlimited number of large rectangles (bins), having width W and height H,

• A. pack all the items, without overlapping, into the minimum number of bins:

or

• B. pack a subset of items, without overl., in a single bin by maximizing the packed area.

• Many variants⇐ applications, cutting problems from standard stock pieces (wood, glass,...):

– the items may/may not be rotated; by 90◦/by any angle;

– guillotine cutting may/may not be imposed (items must be obtained through a sequence of

edge-to-edge cuts parallel to the edges of the bin);

• Generalizations of the One-Dimensional BP =⇒ NP-hard in the strong sense.
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Related multi-dimensional packing problems

• Two-Dimensional Strip Packing Problem (2SP):

Pack a set of rectangular items into a strip of given width W and infinite height, by minimizing

the overall height of the packing. [Applications: cutting rolls of cloth/paper/...]

W

• Three-Dimensional Bin Packing Problem (3BP):

Pack a set of rectangular boxes (items), of width wj, height hj and length lj (j = 1, . . . , n),

into the minimum number of three-dimensional rectangular containers of width W , height H,

and length L. [Applications: container loading, foam cutting]

• Three-Dimensional Strip Packing Problem (3SP):

Pack a set of rectangular boxes into a strip of given width W , height H and infinite length, by

minimizing the overall length of the packing. [Applications: pallet loading]

• 2BP, 2SP, 3BP and 3SP are strongly NP-hard, and very difficult to solve in practice.
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3. Routing problems with loading constraints
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• Recall: Capacitated Vehicle Routing Problem (CVRP):
find at most K routes of minimum total cost to deliver goods demanded by a set of clients i

(each requiring goods of total weight di), for a fleet of K vehicles of limited capacity D, based

at a central depot.

• Applications to real world problems limited by additional constraints:

– CVRP: client demands = total weight of the items to be delivered;

– Real-world: demands = sets of items with a weight and a shape =⇒
combination of CVRP with loading/packing problems.

• 2-Dimensional case:

– Transportation of rectangular-shaped items that cannot be stacked one on top of the other

(big refrigerators, food trolleys, . . . ):

– feasibility of packing on the truck bed;

– feasibility of the loading and unloading operations.

• 3-Dimensional case:

– Transportation of rectangular-shaped boxes that can be stacked one on top of the other;

– feasibility of box stacking (⇐= fragility); constraints on the stability of the loading;

– feasibility of the loading and unloading operations.
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CVRP + 2-Dimensional packing

• Complete undirected graph G = (V,E): V = {0} (depot)
⋃
{1, . . . , n} (clients);

edge set E = {(i, j)}, with cij = cost of edge (i, j);

• K identical vehicles, each having

– weight capacity D;

– rectangular loading surface of width W and height H;

• demand of client i (i = 1, . . . , n):

– mi items of total weight di;

– item Ii` (` = 1, . . . ,mi) has width wi` and height hi`;

– the items must be orthogonally packed on the loading surface;

• each client must be served by a single vehicle;

• let S(k) ⊆ {1, . . . , n} be the set of clients served by vehicle k:

– Weight constraint: total weight
∑

i∈S(k) di ≤ D;

– Loading constraint: there must be a feasible (non-overlapping) loading of all the

transported items into the W ×H loading area.
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CVRP + 2-Dimensional packing (cont’d)

Objective:

• find a partition of the clients into at most K subsets and,

• ∀ subset, a route starting and ending at the depot such that

– all client demands are satisfied;

– the weight constraint is satisfied;

– the loading constraint is satisfied (feasible packing on the loading area);

– the total cost of the edges is a minimum.

Two variants:

• Unrestricted: no further constraint;

• Sequential: the loading of each vehicle must be such that

when a client is visited, the items of its lot can be downloaded through a sequence of
straight movements (one per item) parallel to the H-edge of the loading area.
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(a) Dashed strip = forbidden area for clients visited after client i
Sequential (b) and non-sequential (c,d) packings

Figura 1: Client 4 visited before Client 5
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An instance with 3 vehicles and 8 clients (D = 100)
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CVRP + 2-Dimensional packing: Tabu search

• Neighborhood

– derived from Taburoute (Gendreau, Hertz and Laporte, Management Sci., 1994):

– the algorithm can accept moves producing infeasible tours. Two infeasibilities:

∗ weight-infeasible: total weight > D;

∗ load-infeasible: height of the loading surface > H.

∗ Infeasible moves are assigned a proportional penalty.

• Feasibility check of the candidate tour:

– weight-infeasiblity: immediate;

– load-infeasiblity: NP-hard problem =⇒heuristic algorithm derived from heuristics for

2BP (Lodi, Martello and Vigo, INFORMS J. Comp., 1999), and

2SP (Iori, Martello and Monaci, Eur. J. Oper. Res., 2003).

• Tabu search objective function (infeasibilities = penalties):

– solution s with c(k) = total edge cost in route k:

Z(s) =

K∑
k=1

c(k) + αq(s) + βh(s)

– q(s) = total weight excess;

– h(s) = total height excess in the infeasible loadings;

– α and β = self-adjusting parameters.

• Gendreau, Iori, Laporte, Martello, Networks (2010).
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CVRP + 2-Dimensional packing: Branch-and-Cut

ILP model:

• based on the classical two-index vehicle-flow formulation;

• only the sequential version has been addressed.

Infeasible routes:

• when an integer solution is found, every route is checked for weight and load feasibility;

• the checking procedure includes

– greedy heuristics;

– lower bounds;

– branch-and-bound;

• ∀ infeasible route, a cut prohibiting it is added to the model;

• a pool of solved (proved feasible or infeasible) routes is stored.

Iori, Salazar González and Vigo, Transportation Science (2007).
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CVRP + 2-Dimensional packing: Computational experiments

• CVRP instances from the literature with:

– 15 ≤ # customers ≤ 255;

– 3 ≤ # vehicles ≤ 27;

– number and dimensions of items randomly generated according to five classes

• Branch-and-Cut:
solves to optimality instances with up to 25 customers

• Tabu Search:
TS (5’ CPU limit) beats B&C (24 h CPU) for larger instances.

• Improve metaheuristic algorithms:

Ant colony optimization: Fuellerer, Doerner, Hartl, Iori, Comput Oper Res (2009)
Guided tabu search: Zachariadis, Tarantilis, Kiranoudis, Eur J Oper Res (2009)
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CVRP + 3-Dimensional packing

Same constraints as the 2-dimensional case, but

• the items are three-dimensional boxes;

• the boxes can be rotated by 90◦ degrees on the horizontal plane;

• some items can be fragile;

• no non-fragile item be placed over a fragile one;

• when boxes are stacked, the supporting surface must be large enough to guarantee stability;

• the loading of each vehicle must be such that

when a client is visited, the items of its lot can be downloaded

without shifting the items requested by other clients.
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A sequential three-dimensional vehicle loading

Figura 2: the vehicle is unloaded in the direction of the z axis
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An instance with 2 vehicles and 5 clients (D = 100)
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CVRP + 3-Dimensional packing: Tabu search
• Inner Tabu search

– iteratively invoked by the main Tabu search;

– subproblem solved:

given an ordered set of clients to be visited in this order,

can all the requested items be feasibly loaded into a single vehicle?

– the subproblem is NP-hard;

– solved as a three-dimensional strip packing problem;

– neighborhood: modify the loading sequence and execute two greedy heuristics;

– if no feasible solution is found, the algorithm returns a

load-infeasible solution: loading length λ > L (vehicle length);

– if the total weight or the total volume exceeds the vehicle capacity,

dummy loading: length λ = 2L;

– the main Tabu search uses λ to evaluate the moves.

• Outer Tabu search: derived from the algorithm for CVRP + 2-Dimensional packing.

• Gendreau, Iori, Laporte, Martello, Transportation Science (2006).

• Guided tabu search: Fuellerer, Doerner, Hartl, Iori, Comput Oper Res (2009)

• Ant colony optimization: Fuellerer, Doerner, Hartl, Iori, Eur J Oper Res (2010)
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Other routing problems with loading constraints

• Basis: Traveling Salesman Problem with Pickup and Delivery (TSPPD):

single vehicle must visit a set of customers, each associated with an origin location where some

items must be picked up, and a destination location where such items must be delivered;

find a shortest Hamiltonian cycle through all locations while ensuring that the pickup of any

given request is performed before the corresponding delivery.

– TSPPD and LIFO loading:
pickups and deliveries must be performed in LIFO order (vehicles with a single access point);

– TSPPD and FIFO loading:
pickups and deliveries must be performed in FIFO order (AGVs that load items on one end

and unload them at the other end);

• CVRP + 2-dimensional loading + pickup and delivery constraints;

• 3-dimensional container loading problems with multi-drop constraints (special sequences);

• CVRP with time windows and three-dimensional container loading;

• CVRP with pickup and delivery, delivery due dates and 3-dimensional loading:

auto-carrier transportation problem;

• TSP with pickup and delivery and handling costs (when the loading is not sequential);

• ...
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CVRP + 3-Dimensional packing:

Computational experiments

Real-world instances:

• Italian company (furniture for bedrooms);

• fleet of private-owned vehicles paid per mileage;

• demands: three-dimensional rectangular items (to be assembled);

• identical vehicles (standard ISO containers);

• time windows neglected

• typical solutions: single day tours + multiple days tours.

• volumes between 1% and 4% of the vehicle volume;

• heights between 10% and 50% of the vehicle height.
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Gendreau et al.: A Tabu Search Algorithm for a Routing and Container Loading Problem
Transportation Science 40(3), pp. 342–350, © 2006 INFORMS 349

Figure 3 Distribution of Clients in Italy (Instance F01)

Italy are handled through a fleet of privately owned
vehicles. These carriers are paid by mileage, so the
company is interested in minimizing the total distance
traveled. A sample instance (F01 in Table 3) is depicted
in Figure 3; the filled circle represents the depot, and
the empty circles represent the clients.
The demands consist of three-dimensional rectan-

gular items that, once delivered, are unpacked and
assembled to obtain the pieces of furniture. The vehi-
cles are identical and have containers of standard ISO
dimensions. To reduce the real problem to 3L-CVRP,
we dropped some constraints. In particular, we did
not consider time windows and pickup of damaged
furniture at the customers’ sites, and we approxi-
mated the real distances with Euclidean distances.
Typical solutions include both single-day tours and
multiple-day tours.
Concerning dimensions, the volumes of the items

are between 1% and 4% of the vehicle volume, while
the height of each item is between 10% and 50% of
the vehicle height. The average total weight and total
volume demanded by a client are, respectively, 0.7%
and 5% of the corresponding vehicle capacities.
In Table 3 we show the results obtained by apply-

ing the tabu search algorithm of §4 to five instances
provided by the company. For each instance, the algo-
rithm was run three times, with different time lim-
its: 1 hour, 10 hours, and 1 day. The substantial
increase we needed for the time limit, with respect

to those adopted in Tables 1 and 2, was mainly due
to the increased difficulty associated with the three-
dimensional loading. Indeed, the excess of length was
computed as in §5.1, but we allowed TS3L-SV to per-
form up to 10 iterations (instead of 3). The first five
entries give the instance name, the number of clients
	n�, the number of items 	M�, the number of vehi-
cles 	v�, and the solution value (in kilometers) found
by the initial heuristics 	z0�. The three next pairs of
entries give, for each time limit, the solution value 	z�
and the elapsed CPU time required to obtain this
value 	secz�.
The initial heuristics find a feasible solution for all

five instances, with an average solution value equal to
7,091 km. The three runs decrease this value by 33.7%,
35.3%, and 37.8%, respectively. For three instances
the values obtained after 10 hours remain unchanged
after 24 hours. When used in an operational plan-
ning situation, the preferred time limits are 10 hours
(overnight) or 1 hour (when relatively fast decisions
have to be taken).

5.3. Robustness and Parameters Setting
The parameters setting was performed on the 27 in-
stances considered in §5.1. We start with the setting of
the parameters needed to compute the score of a move
(see (1)). The algorithm proved to be quite robust with
respect to the starting values assigned to parameters )
and *. For each tentative value T , we set ) = T /L
and *= T /D. The attempted values for T were 1, c̄,
10c̄, 20c̄, and 30c̄, where c̄ is the average edge cost.
The value T = 20c̄ produced slightly better results and
was selected for the final configuration. Also changing
the level of variation of ) and * at each iteration did
not produce significant variations. The diversification
parameter + was set to

√
2nv. This value is better than√

nv,
√
3nv, and

√
4nv, which produced slightly worse

results.
The algorithm proved to be more sensitive to the

neighborhood size p and the tabu list tenure -
(see §4). Parameter p was set equal to min�n/4�20�,
while worse results were produced by min�n/6�10�,
min�n/5�15�, and min�n/3�25�. Parameter - took
instead the value min�n/10�15�, leading to better
results than min�n/2�50�, min�n/4�50�, min�n/6�50�,
min�n/8�25�, min�n/10�20�, and min�n/10�10�.
In the multistart approach, the algorithm proved

to be sensitive to the maximum number of iterations
given to each start. The final configuration (i.e., 25,000
iterations when n ≤ 25, 5,000 when 25 < n < 50, and
1,000 iterations when n ≥ 50) was obtained by test-
ing different values between 500 and 30,000 iterations.
Concerning the single-start approach, a CPU time
limit of 7,200 seconds for all the instances improved
the solution value by 0.6% for the first group of nine
instances and by 1% for the second group of nine
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1 hour 10 hours 24 hours

CPU time CPU time CPU time

Instance n M K Greedy z secz z secz z secz
F01 44 141 4 7711 3723 2839.4 3694 32133.9 3694 32133.9

F02 49 152 4 7167 4182 1993.8 4182 1993.8 3941 86046.8

F03 55 171 4 6111 3674 3478.5 3650 31776.5 3650 31776.5

F04 57 159 4 7059 4686 2520.5 4543 5049.7 4509 5995.1

F05 64 181 4 7408 7235 2366.3 6886 33917.9 6241 75441.1

Average 7091 4700 2639.7 4591 20974.3 4407 46278.7

M = total number of items to deliver.
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Conclusions and open perspectives

Routing problems with loading constraints constitute a rich and lively research areas.

Many issues need to be explored or better studied. For example:

• Evaluation of classical vehicle routing situations (e.g., allowing split deliveries).

• Heterogeneous vehicle fleets.

• Addition of special loading requirements (e.g., issues related to the center of gravity of the

load).

• Use of column generation techniques for effectively determining exact solutions.

• Study of different objective functions reflecting special practical needs, such as routes with

similar lengths or loads.

• Integration of these models and algorithms with location issues.

• ...
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Thank You for your attention
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