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Linear Ordering Problem

Motivation
Suppose m persons have assessed n objects O1, . . . , On by pairwise comparisons and that based on these judgments a ranking of the
objects has to be found. One possibility is to determine a linear ordering of the objects such that the number of individual pairwise
assignments that are not in accordance with this ordering is minimized. This problem is known as the linear ordering problem and
belongs to the class of NP-hard combinatorial optimization problems.

Applications

• Economics: triangulation problem for input-output tables

• Social science: aggregation of individual preferences

• Politics: evaluation of corruption perception index

• Industry: determination of the best schedule on a single machine
with restrictions of the tasks among each other

• Sports: optimum triangulation of summary tables

Mathematical formulation

• Let Dn = (Vn,An) be the complete digraph on n nodes and
m = n(n−1) arcs. A tournament T in An is a subset of arcs
containing, for every pair of nodes i, j, either the arc (i, j) or the arc
( j, i) but not both. An acyclic tournament is a tournament without
directed cycles. It is easy to see, that such an acyclic tournament
corresponds to a linear ordering and vice versa.

23 54

T

1

The permutation π corresponding to the acyclic tournament T is
π = (3 4 5 2 1).

• The linear ordering polytope Pn
LO is defined as the convex hull of the

incidence vectors of the acyclic tournaments in Dn, i.e.,

Pn
LO := conv{χT ∈ {0,1}n | T ⊆ An is an acyclic tournament}.

• The vertices of Pn
LO correspond to acyclic tournaments.

• To solve the linear ordering problem minimize a linear function over
this polytope, where an objective coefficient ci j corresponds to the
arc i j. In the example ci j would be the number of comparisons
ranking object Oi before object O j.

• For algorithmic purposes a description of the polytope as a convex
hull is of no help. Instead we need a description by a system of linear
equations Dx = d and linear inequalities Ax ≤ b. In addition we are
interested in finding a minimal equation system and a nonredundant
system of inequalities.

• An integer formulation of the linear ordering problem is

min
π∈S(n)

∑
i j∈An

ci jxi j

s.t. xi j + x ji = 1 for all i, j ∈Vn, i < j, (1)

xi j + x jk + xki ≤ 2 for all i, j,k ∈Vn, i < j, i < k, j 6= k, (2)

xi j ≤ 1 for all i, j ∈Vn, i < j, (3)

xi j ∈ {0,1} for all i, j ∈Vn, i < j. (4)

• Equations (1) give a minimal equation system, inequalities (2) are
3-dicycle inequalities and comprise, together with equations (1), all
other cycle inequalities. Inequalities (3) are the trivial hypercube
inequalities.

• For n = 2, . . . ,5 the linear ordering polytope Pn
LO is completely

described by constraints (1)-(3).

• For n ≥ 6 more constraints are needed as the following example
shows, which is a non-integer vertex of the polytope defined by
equalities (1) and the 3-cycle inequalities (2).

The values xi j of the dashed edges are 0.5 and 1 for all others.

Research
• Complete linear description of the small linear ordering polytopes

P6
LO and P7

LO.

• Design of a branch-and-cut algorithm for the linear ordering
problem including two new separation routines.
Both methods are based on the following concept. One combines
known valid inequalities, for example 3-dicycle inequalities, such that
in the resulting inequality all coefficients of the left hand side are
divisible by k and the right hand side is not. There are two variants of
this construction:

• Shortest Path Mod 2. The advantage of this method is that
there is no restriction on the constraints that are used for the
generation of the new cut. On the other hand no extension from
k = 2 to bigger prime numbers is possible and the violation of the
resulting cuts is not maximal.

• Maximally violated mod-k. In this method the augmentation to
bigger prime numbers is relatively easy and the violation is
maximal in any case. But only binding constraints can be used
to generate a maximally violated mod-k cut.

It is known that Möbius ladders and 3-fence inequalities are
contained in the class of mod-2 cuts, therefore no special separation
routines for these constraint classes are necessary.
Example of a Möbius ladder with 7 nodes:

• Development of heuristics for the determination of lower bounds for
the linear ordering problem.

Contact
Gerhard Reinelt and Hanna Seitz
Im Neuenheimer Feld 368
69120 Heidelberg
{Gerhard.Reinelt, Hanna.Seitz}@informatik.uni-heidelberg.de


