Basics oF LINEAR OPTIMIZATION

Examples
Duality
Polyhedrons

o o 0 @

Simplex-Algorithm

MIP Oswald/Reinelt Basics of Linear and Discrete Optimization — p.1/31

Example: Oil refinement

Cracking raw oil to Light, Middle or Heavy oil
There are two procedures:

1) 1 unit raw oilto 1 L, 2 M, 2 H

2) 1 unit raw oil to 4 L, 2 M, 1 H

Costs: 1) 3 money units, 2) 5 money units

Delivery commitments: 4 L, 5 M, 3 H

e oo 0o 0 @

Optimization:
Minimize the total costs while satisfying all delivery commitments
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Example: Oil refinement (Modelling)

® Introduce variables z; and o
They represent units of raw oil cracked with procedure 1) resp. 2)

Objective: minimize costs 3x1 + dxo
Constraint: positiveness r1,T9 > 0
Constraint: deliver at least 4 L x1 +4x9 >4

Constraint: deliver at least 5 M 2r1 +2x9 > 5

e o o 0 @

Constraint: deliver at least 3 H 201+ 29> 3

min 3z + 5xo

st. x+4x0 > 4
201 +2x9 > 5

21 +x2 > 3

xry,x0 > 0
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Example: In the Marketplace

® We want to buy suitable amounts of potatoes, spinach and poultry

per 100g Potatoes | Spinach | Poultry
Cost / cents 10 15 40
Protein / g 2 3 20
Carbohydrate /g 18 3 0
Calcium / mg 7 83 8
Iron / mg 0.6 2 1.4
Vitamin A / L.U. 0 7300 80

® Daily minimum requirements: 65g of protein, 90g of carbohydrate,
200mg of calcium, 10mg of iron, and 5000 I.U. of Vitamin A

® Optimization:
Spend as less money as needed to satisfy all the requirements
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Example: In the Marketplace (LP)

Variables 1, z2 and x3 give the amount of potatoes, spinach and poultry

min 40z, 41524 +10x3

s.t. 20z, +3x9 +2x3 > 65
3xo +18z3 > 90
8x1 +83x2 +7x3 > 200
1.4z, +2x4 +0.6z3 > 10
80z 47300z > 5000
r1,T9,r3 > 0

Example: In the Marketplace (Xpress I)

nodel Market pl ace
uses "mmxprs"

decl ar ati ons

NPr od =3

Nl ncred = 5

IP = 1..NProd
Il = 1..N ncred

TAB: array(l1,1P) of real

REQ array(ll) of real

PRI CE: array(lP) of real

X: array(lP) of npvar
end- decl arati ons

Example: In the Marketplace (Xpress II)

TAB : = [20, 3, 2,
0, 3, 18,
8, 83, 7,
1. 4, 2, 0.6,

80, 7300, O]
[65, 90, 200, 10, 5000]
[40, 15, 10]

REQ
PRI CE:

MnPrice := sump in IP) PRICE(p) * X(p)

forall (i in 1)
sum(p in IP) TAB(i,p) * x(p) >= REQi)

mnimze(MnPrice)
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Example: In the Marketplace (Xpress III)

witeln("Objective: ", getobjval)
forall(p in IP)
wite("Product”,p,":",getsol (x(p))," ")
witeln

end- nodel
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Example: In the Marketplace (Duality)

Assume we want to sell pills of protein, iron, vitamin A, etc.
y1 cents/gram of protein

y2 cents/gram of carbohydrate

y3 cents/mg of calcium

y4 cents/mg of iron

ys cents/L.U. of vitamin A

What are suitable prices for the pills?

o o o o0 o 0 b

The costs of the incredients of 100g poultry shoult be cheaper than
buying 100g poultry itself. Analogously for potatoes and spinach.

® We want to maximize our income
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Example: In the Marketplace (dual LP)

max  65y; +90ys +200ys +10ys  +5000y5

Weak Duality Theorem

Primal linear program (P)
min {cT'z | Az > b,z > 0}

Dual linear program (D)
max {b"y | ATy < ¢,y > 0}

Let vg € {x | Az > b,z >0} and yo € {y | ATy < ¢,y > 0}.

Then b”yy < ¢’z holds.

MIP Oswald/Reinelt Basics of Linear and Discrete Optimization: Duality - p.11/31

st 20y, +8ys  +1.4y4 +80ys < 40
3y1 +3y2 +83ys +2ys +7300ys < 15
2y +18y2 +7ys  +0.6y, < 10
Y1, Y2, Y3, Y4, y5 = 0
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Building the Dual LP
® equation — free variable
$® inequality — signed variable
® signed variable — inequality
® free variable — equation
® objective function — right hand side
® right hand side — objective function
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Farkas Lemma

Theorem (Farkas Lemma):
Either there are z,y fulfilling

Ax +By < a

Cx +Dy = b
z > 0
or there are u, v fulfilling
wTA +0TC > 0
uI'B +vI'D 0
u > 0
uTa +0Tb < 0.

MIP Oswald/Reinelt Basics of Linear and Discrete Optimization: Duality - p.13/31

Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs with (P) being a
maximization and (D) a minimization problem. Let P and D be the sets
of valid solutions of (P) and (D) and z*, u* the optimal solutions of (P)
and (D). (z* is —oo if P = () and +o0 if (P) is unbounded, u* analog).
Then one of the following cases holds:

® —0<F=u" <40 < z* finite <= u* finite

Theorems of Complementary Slackness

Let (P) and (D) be a the following primal-dual pair of LPs:
(P) max{c’z | Az < b} (D) min{u®b|uTA=c" u>0}.

Theorem of weak complementary slackness: Let T and @ be feasible
solutions of (P) and (D). Then they are optimal if and only if:

u; >0= A, T=0b; Vi.

Theorem of strong complementary slackness: If there exist feasible
solutions for both (P) and (D) then there exist optimal solutions Z and u
with:
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® =+4oc0o=D=10
® yv=—0c0o=>P=1(
® P=0=D=0Poru*=—-c0
® D=0=P=0or z*=+o00
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Standard Formulations of an LP
max c’z +dTy
st. Az +By > a
Cx 4Dy = b
x > 0
max (i‘T,T max (7T.7,’
st. Az < b st. Az = b
r > 0
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Transformating LP-Formulations

® signed variables — free variables:
x; > 0 can be added to the system Ax < b.

® free variables — signed variables:
set y; = mj’ —x; with xf’,x; > 0.

® ecquations — inequalities:
replace Az = b by Az < b and Az > b.

® inequalities — equations:
replace Az <bby Av+ Iy =>band y > 0.
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Optimization Problems

Linear program
max {d"y | By = a, Dy < b,y > 0}
Mixed-integer program
max {cTz+d"y | Azv+ By = a,Cx+ Dy < b,y > 0,2 > 0, z integer}

Integer program
max {cTx | Az = a,Cz < b,x >0, z integer}
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Polyhedrons

® Definition: The set P=(A,b) = {x € R" | Az = b,z > 0} is called
polyhedron. If the set is bounded we call it polytope.

® Polyhedrons are convex, i.e.
z,y € P=(A,b) = Mz + (1— Ny € P=(A,b),VO< A <1

® 1 c P=(A,D) is called vertex if it cannot be build as a proper convex
combination of y,z € P=(A,b).
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Basic Theorems on Polyhedrons

® Let P=(A,b) # 0. P=(A,b) is a polytope iff Ad > 0 with Ad = 0.

® 1 c P=(A,D) is vertex iff the columns of A corresponding to the
positive entries of = are linearly independent. The number of vertices
is finite and if P=(A,b) # 0 there is at least one vertex.

® Let P=(A,b) # 0 and V the set of verticies. Then any x € P=(A,b)

can be written as
T = Z \Niv; +d

v, €V
with \; >0, S\ =1, d > 0 and Ad = 0.
® Given the program (P): max{clz | Ax = b,z > 0} with P=(A,b) # 0.
Then either (P) is unbounded or one of the vertices of P=(A4,b) is an
optimal solution of (P).
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Definition of the basis

Let A€ R™*", be R™ and B C {1,...,n} defines a subset of the
columns of A with |B| =m and A, i € B, linearly independent. Ap
denotes the corresponding submatrix of A and Ay the remainder.

® Ap is called basis and Ay nonbasis of A.

® = (zp,zy) withzp = Aglb and x = 0 is called basic solution of
the basis Ap.

® Let Ap be a basis. Then z;, j € B are called basic variables and x;,
j € N are called nonbasic variables

® A basis Ap and the corresponding basic solution = are called feasible
if Az'b > 0 holds.

® A basic solution is called nondegenerate if Az'b > 0 holds. Otherwise
it is called degenerate.
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Vertices and basic solutions

® Theorem.
Let P=(A,b) be a polyhedron with rank(A) =m <n and z € P.
x is vertex of P=(A,b) if and only if = is a basic feasible solution.
® We could simply calculate all basic solutions and evaluate them - but

there are exponentially many: (:,Ll)
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Simplex algorithm - main idea

® Idea of the Simplex-Method: start from one vertex and jump to a
neighbour vertex with a better objective value until we reach the
optimum

® How can we go from one vertex to another?

Just replace one index in B!

® Two important things: choose a series of basic feasible solutions and
increase (more exactly: do not decrease) objective value in each step
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Revised Simplex

Input: Problemdata: A, b, ¢ and feasible solution: B, Agl, b
Output: Solution of max{cTz | Az = b,z > 0}

(1) BTRAN (Calculate shadow prices) 7l = chAG!

(2) PRICE (Price out)
Compute the reduced costs coefficients

Ci=(cR);—nTAyejforj=1,...,n—m

and choose an index s with ¢; > 0 (otherwise stop: optimal)
(3) FTRAN (Generate pivot-column) d:= ARzt A
(4) CHUZR (Ratio Test) Ao := njm{% |d;>0,i=1,...,m}
Choose index r with d; > 0 and %— = )\o (otherwise stop: unbounded)

(5) WRETA (Update) Update the basis B, A5*, b and goto (1)

MIP Oswald/Reinelt Basics of Linear and Discrete Optimization: Simplex - p.24/31




Summary of the primal simplex

» Optimal solution always on a vertex
corresponding to a basic feasible solution

» Two sets B, N of indices, variables in N fixed

» BExchanging two indices in each step which
corresponds to moving to a neighbour vertex

» Calculate the shadow prices 7 and compare
with objective vector ¢ to see, if and in which
direction the objective function gets better

» Always feasible and work towards optimality

Open questions

» Prove that algorithm terminates

(problem: degeneracy = cycling)

» How to get a feasible basis (phase I)?
# Which index ¢ with p; > ¢; to choose? =

pricing-strategies

» How can we efficiently treat bounds, slack

variables, sparsity, matrix decompositions,
updates?

» What about stability? How to avoid basis

matrices with a bad condition (close to
singularity)?

Finding a feasible start basis

# Two phases. In phase I we solve the problem
min{) s, | Ax +s =0, x,s > 0} starting with
the feasible basis s = b,z = 0.

» If optimal solution has solution s # 0 the

original problem is infeasible, else x is feasible
for it (goto phase II).

# Problem: needs many iterations, whole basis
must be exchanged at least once
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Basics of the dual simplex

» Definition. A basis Ap of A is called primal

feasible if Aglb > 0, and dual feasible if the
reduced costs ¢ = c§ — cL AL Ay <0.

» The corresponding basic solution = (zp = Aglb

and xy = 0) is called primal feasible, and the
basic solution u” = LA is called dual feasible.

» Theorem. Let P = {u | u? A > c!'}. The vector

u is a vertex of P if and only if u is a dual
feasible basic solution.

» Corollary. A basis Ap is optimal if and only if it

is both primal feasible and dual feasible.

MIP Oswald/Reinelt Basics of Linear and Discrete Optimization: Simplex - p.28/31




Dual Simplex

Input: Problemdata: A, b, ¢ and dual feasible basis: B, Ap

Output: Solution of max{c’z | Az = b,z > 0}

(1) b= A5'b > 0 stop (current solution optimal)

(2) Choose an index r satisfying b, < 0.

(3) (Generate pivot-row) wh = el Ag Ay = A,

(4) If wy > 0 stop (dual problem unbounded)

(5) Compute g := min{% |w; <0,j=1,...,n—m}
and choose an index s with \g =

(6) Compute d = A4,

(7) Update the basis and goto (1)

Cs
ws
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Summary of the dual simplex

Applying the dual algorithm to (P) is the same
as applying the primal algorithm to (D)
The dual of the dual is the primal again

Feasible solutions of (P) and (D) bound one
another

Primal: first choose entering index, then decide
which index has to leave the basis

Dual: first choose leaving index, then decide
which index has to enter the basis
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Differences primal - dual simplex

Dimensions of variables different: m and n

o

e

Can solve the problem with either one, can have
completely different behaviour (# of iterations)

Adding a variable in (P): keep feasibility.
Adding a variable in (D): loose feasibility!

e o o @

Adding a constraint in (D): keep feasibility.
(

Adding a constraint in (P): loose feasibility!
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