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Example: Oil re�nement
Cra
king raw oil to Light, Middle or Heavy oilThere are two pro
edures:1) 1 unit raw oil to 1 L, 2 M, 2 H2) 1 unit raw oil to 4 L, 2 M, 1 HCosts: 1) 3 money units, 2) 5 money unitsDelivery 
ommitments: 4 L, 5 M, 3 HOptimization:Minimize the total 
osts while satisfying all delivery 
ommitments
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Example: Oil re�nement (Modelling)
Introdu
e variables x1 and x2They represent units of raw oil 
ra
ked with pro
edure 1) resp. 2)Obje
tive: minimize 
osts 3x1 + 5x2Constraint: positiveness x1, x2 ≥ 0Constraint: deliver at least 4 L x1 + 4x2 ≥ 4Constraint: deliver at least 5 M 2x1 + 2x2 ≥ 5Constraint: deliver at least 3 H 2x1 + x2 ≥ 3

min 3x1 + 5x2s.t. x1 + 4x2 ≥ 4

2x1 + 2x2 ≥ 5

2x1 + x2 ≥ 3

x1, x2 ≥ 0
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Example: In the Marketpla
e
We want to buy suitable amounts of potatoes, spina
h and poultryper 100g Potatoes Spina
h PoultryCost / 
ents 10 15 40Protein / g 2 3 20Carbohydrate /g 18 3 0Cal
ium / mg 7 83 8Iron / mg 0.6 2 1.4Vitamin A / I.U. 0 7300 80Daily minimum requirements: 65g of protein, 90g of 
arbohydrate,200mg of 
al
ium, 10mg of iron, and 5000 I.U. of Vitamin AOptimization:Spend as less money as needed to satisfy all the requirements
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Example: In the Marketpla
e (LP)
Variables x1, x2 and x3 give the amount of potatoes, spina
h and poultry

min 40x1 +15x2 +10x3s.t. 20x1 +3x2 +2x3 ≥ 65

3x2 +18x3 ≥ 90

8x1 +83x2 +7x3 ≥ 200

1.4x1 +2x2 +0.6x3 ≥ 10

80x1 +7300x2 ≥ 5000

x1, x2, x3 ≥ 0
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Example: In the Marketpla
e (Xpress I)
model Marketplace
uses "mmxprs"

declarations
NProd = 3
NIncred = 5
IP = 1..NProd
II = 1..NIncred
TAB: array(II,IP) of real
REQ: array(II) of real
PRICE: array(IP) of real
x: array(IP) of mpvar
end-declarations
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Example: In the Marketpla
e (Xpress II)
TAB := [20, 3, 2,

0, 3, 18,
8, 83, 7,
1.4, 2, 0.6,
80, 7300, 0]

REQ := [65, 90, 200, 10, 5000]
PRICE:= [40, 15, 10]

MinPrice := sum(p in IP) PRICE(p) * x(p)

forall(i in II)
sum(p in IP) TAB(i,p) * x(p) >= REQ(i)

minimize(MinPrice)
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Example: In the Marketpla
e (Xpress III)
writeln("Objective: ", getobjval)
forall(p in IP)
write("Product",p,":",getsol(x(p))," ")
writeln

end-model
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Example: In the Marketpla
e (Duality)
Assume we want to sell pills of protein, iron, vitamin A, et
.
y1 
ents/gram of protein
y2 
ents/gram of 
arbohydrate
y3 
ents/mg of 
al
ium
y4 
ents/mg of iron
y5 
ents/I.U. of vitamin AWhat are suitable pri
es for the pills?The 
osts of the in
redients of 100g poultry shoult be 
heaper thanbuying 100g poultry itself. Analogously for potatoes and spina
h.We want to maximize our in
ome
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Example: In the Marketpla
e (dual LP)
max 65y1 +90y2 +200y3 +10y4 +5000y5s.t. 20y1 +8y3 +1.4y4 +80y5 ≤ 40

3y1 +3y2 +83y3 +2y4 +7300y5 ≤ 15

2y1 +18y2 +7y3 +0.6y4 ≤ 10

y1, y2, y3, y4, y5 ≥ 0
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Weak Duality Theorem
Primal linear program (P)

min {cT x | Ax ≥ b, x ≥ 0}Dual linear program (D)
max {bT y | AT y ≤ c, y ≥ 0}Let x0 ∈ {x | Ax ≥ b, x ≥ 0} and y0 ∈ {y | AT y ≤ c, y ≥ 0}.Then bT y0 ≤ cT x0 holds.
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Building the Dual LP
equation −→ free variableinequality −→ signed variablesigned variable −→ inequalityfree variable −→ equationobje
tive fun
tion −→ right hand sideright hand side −→ obje
tive fun
tion
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Farkas Lemma
Theorem (Farkas Lemma):Either there are x, y ful�lling

Ax +By ≤ a

Cx +Dy = b

x ≥ 0or there are u, v ful�lling
uT A +vT C ≥ 0

uT B +vT D = 0

u ≥ 0

uT a +vT b < 0.
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Duality Theorem
Let (P) and (D) be a primal-dual pair of LPs with (P) being amaximization and (D) a minimization problem. Let P and D be the setsof valid solutions of (P) and (D) and z∗, u∗ the optimal solutions of (P)and (D). (z∗ is −∞ if P = ∅ and +∞ if (P) is unbounded, u∗ analog).Then one of the following 
ases holds:

−∞ < z∗ = u∗ < +∞ ⇐⇒ z∗ �nite ⇐⇒ u∗ �nite
z∗ = +∞ ⇒ D = ∅
u∗ = −∞ ⇒ P = ∅
P = ∅ ⇒ D = ∅ or u∗ = −∞
D = ∅ ⇒ P = ∅ or z∗ = +∞
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Theorems of Complementary Sla
kness
Let (P) and (D) be a the following primal-dual pair of LPs:

(P ) max{cT x | Ax ≤ b} (D) min{uT b | uT A = cT , u ≥ 0}.Theorem of weak 
omplementary sla
kness: Let x and u be feasiblesolutions of (P) and (D). Then they are optimal if and only if:
ui > 0 =⇒ Ai.x = bi ∀i.Theorem of strong 
omplementary sla
kness: If there exist feasiblesolutions for both (P) and (D) then there exist optimal solutions x and uwith:
ui > 0 ⇐⇒ Ai.x = bi ∀i.
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Standard Formulations of an LP
max cT x +dT ys.t. Ax +By ≥ a

Cx +Dy = b

x ≥ 0

max cT xs.t. Ax ≤ b

max cT xs.t. Ax = b

x ≥ 0
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Transformating LP-Formulations
signed variables −→ free variables:
xi ≥ 0 
an be added to the system Ax ≤ b.free variables −→ signed variables:set yi = x+

i − x−i with x+
i , x−i ≥ 0.equations −→ inequalities:repla
e Ax = b by Ax ≤ b and Ax ≥ b.inequalities −→ equations:repla
e Ax ≤ b by Ax + Iy = b and y ≥ 0.
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Optimization Problems
Linear program

max {dT y | By = a, Dy ≤ b, y ≥ 0}Mixed-integer program
max {cT x + dT y | Ax+ By = a, Cx+ Dy ≤ b, y ≥ 0, x ≥ 0, x integer}Integer program
max {cT x | Ax = a, Cx ≤ b, x ≥ 0, x integer}
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Polyhedrons
De�nition: The set P=(A, b) = {x ∈ Rn | Ax = b, x ≥ 0} is 
alledpolyhedron. If the set is bounded we 
all it polytope.Polyhedrons are 
onvex, i.e.
x, y ∈ P=(A, b) =⇒ λx + (1− λ)y ∈ P=(A, b), ∀ 0 ≤ λ ≤ 1.
x ∈ P=(A, b) is 
alled vertex if it 
annot be build as a proper 
onvex
ombination of y, z ∈ P=(A, b).
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Basi
 Theorems on Polyhedrons
Let P=(A, b) 6= ∅. P=(A, b) is a polytope i� ∄d ≥ 0 with Ad = 0.
x ∈ P=(A, b) is vertex i� the 
olumns of A 
orresponding to thepositive entries of x are linearly independent. The number of verti
esis �nite and if P=(A, b) 6= ∅ there is at least one vertex.Let P=(A, b) 6= ∅ and V the set of verti
ies. Then any x ∈ P=(A, b)
an be written as

x =
∑

vi∈V

λivi + d

with λi ≥ 0, ∑
λi = 1, d ≥ 0 and Ad = 0.Given the program (P): max{cT x | Ax = b, x ≥ 0} with P=(A, b) 6= ∅.Then either (P) is unbounded or one of the verti
es of P=(A, b) is anoptimal solution of (P).
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De�nition of the basis
Let A ∈ Rm×n, b ∈ Rm and B ⊂ {1, . . . , n} de�nes a subset of the
olumns of A with |B| = m and A.i, i ∈ B, linearly independent. ABdenotes the 
orresponding submatrix of A and AN the remainder.

AB is 
alled basis and AN nonbasis of A.
x = (xB , xN ) with xB = A−1

B b and xN = 0 is 
alled basi
 solution ofthe basis AB.Let AB be a basis. Then xj , j ∈ B are 
alled basi
 variables and xj ,
j ∈ N are 
alled nonbasi
 variablesA basis AB and the 
orresponding basi
 solution x are 
alled feasibleif A−1

B b ≥ 0 holds.A basi
 solution is 
alled nondegenerate if A−1
B b > 0 holds. Otherwiseit is 
alled degenerate.
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Verti
es and basi
 solutions
Theorem.Let P=(A, b) be a polyhedron with rank(A) = m < n and x ∈ P .
x is vertex of P=(A, b) if and only if x is a basi
 feasible solution.We 
ould simply 
al
ulate all basi
 solutions and evaluate them - butthere are exponentially many: (

n
m

)
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Simplex algorithm - main idea
Idea of the Simplex-Method: start from one vertex and jump to aneighbour vertex with a better obje
tive value until we rea
h theoptimumHow 
an we go from one vertex to another?Just repla
e one index in B!Two important things: 
hoose a series of basi
 feasible solutions andin
rease (more exa
tly: do not de
rease) obje
tive value in ea
h step
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Revised Simplex
Input: Problemdata: A, b, c and feasible solution: B, A−1

B , bOutput: Solution of max{cT x | Ax = b, x ≥ 0}(1) BTRAN (Cal
ulate shadow pri
es) πT := cT
BA−1

B(2) PRICE (Pri
e out)Compute the redu
ed 
osts 
oe�
ients
cj := (cT

N )j − πT ANej for j = 1, . . . , n−mand 
hoose an index s with cs > 0 (otherwise stop: optimal)(3) FTRAN (Generate pivot-
olumn) d := A−1
B A.s(4) CHUZR (Ratio Test) λ0 := min{ bi

di
| di > 0, i = 1, . . . , m}Choose index r with di > 0 and bi

di
= λ0 (otherwise stop: unbounded)(5) WRETA (Update) Update the basis B, A−1

B , b and goto (1)
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Summary of the primal simplex
Optimal solution always on a vertex
orresponding to a basi
 feasible solutionTwo sets B, N of indi
es, variables in N �xedEx
hanging two indi
es in ea
h step whi
h
orresponds to moving to a neighbour vertexCal
ulate the shadow pri
es π and 
omparewith obje
tive ve
tor c to see, if and in whi
hdire
tion the obje
tive fun
tion gets betterAlways feasible and work towards optimality
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Open questions
Prove that algorithm terminates(problem: degenera
y ⇒ 
y
ling)How to get a feasible basis (phase I)?Whi
h index i with pi > ci to 
hoose? ⇒pri
ing-strategiesHow 
an we e�
iently treat bounds, sla
kvariables, sparsity, matrix de
ompositions,updates?What about stability? How to avoid basismatri
es with a bad 
ondition (
lose tosingularity)?
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Finding a feasible start basis
Two phases. In phase I we solve the problem
min{∑i si | Ax + s = b, x, s ≥ 0} starting withthe feasible basis s = b, x = 0.If optimal solution has solution s 6= 0 theoriginal problem is infeasible, else x is feasiblefor it (goto phase II).Problem: needs many iterations, whole basismust be ex
hanged at least on
e
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Basi
s of the dual simplex
De�nition. A basis AB of A is 
alled primalfeasible if A−1

B b ≥ 0, and dual feasible if theredu
ed 
osts c = cT
N − cT

BA−1
B AN ≤ 0.The 
orresponding basi
 solution x (xB = A−1

B band xN = 0) is 
alled primal feasible, and thebasi
 solution uT = cT
BA−1

B is 
alled dual feasible.Theorem. Let P = {u | uTA ≥ cT}. The ve
tor
u is a vertex of P if and only if u is a dualfeasible basi
 solution.Corollary. A basis AB is optimal if and only if itis both primal feasible and dual feasible.
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Dual Simplex
Input: Problemdata: A, b, c and dual feasible basis: B, ABOutput: Solution of max{cT x | Ax = b, x ≥ 0}(1) If b = A−1

B b ≥ 0 stop (
urrent solution optimal)(2) Choose an index r satisfying br < 0.(3) (Generate pivot-row) wT
N = eT

r A−1
B AN = Ar.(4) If wN ≥ 0 stop (dual problem unbounded)(5) Compute λ0 := min{ cj

wj
| wj < 0, j = 1, . . . , n−m}and 
hoose an index s with λ0 = cs

ws(6) Compute d = A−1
B A.qs(7) Update the basis and goto (1)
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Summary of the dual simplex
Applying the dual algorithm to (P) is the sameas applying the primal algorithm to (D)The dual of the dual is the primal againFeasible solutions of (P) and (D) bound oneanotherPrimal: �rst 
hoose entering index, then de
idewhi
h index has to leave the basisDual: �rst 
hoose leaving index, then de
idewhi
h index has to enter the basis
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Di�eren
es primal - dual simplex
Dimensions of variables di�erent: m and nCan solve the problem with either one, 
an have
ompletely di�erent behaviour (# of iterations)Adding a variable in (P): keep feasibility.Adding a variable in (D): loose feasibility!Adding a 
onstraint in (D): keep feasibility.Adding a 
onstraint in (P): loose feasibility!
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